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Summary /6/7/3

A mathematical model of one experiment ideally
mounted to the experiment support tube is considered. A
set of compatibility equations is developed and expanded to
determine expressions for interaction loads and rotational
deflections. Two digital computer programs are developed
to undertake a host of thermal inputs for various experi-

ment sizes and mounting locations. ﬂ
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Symbols

temperature induced displacement and rotation matrix for the experiment
temperature induced displacement and rotation matrix for the hexagonal support tube
influence coefficient matrix for loads applied at the neutral axis of the experiment

influence coefficient matrix for loads applied at the neutral axis of the hexagonal support
tube

matrix of loads acting off the experiment neutral axis and referenced to the neutral axis
of the experiment

matrix of loads acting off the hexagonal support tube neutral axis and referenced to the
neutral axis of the hexagonal support tube

rotational deflection of point P with respect to point ', radians (Figure 3)
rotational deflection of point P’ with respect to point P', radians (Figure 3)
rotational deflection of point P* with respect to point P, radians (Figure 3)
distance between forward experiment mount and assumed cantilevered point, in

length of hexagonal support tube subjected to free bending, in

The following symbols, where capped with a bar (-), refer to the hexagonal support tube.

coefficient of linear thermal expansion of experiment housing, in/in/°F
modulus of elasticity of experiment housing, psi

cross sectional moment of inertia of experiment housing, in*

uniform temperature of experiment referenced to a datum temperature, °F
transverse linear thermal gradient applied across experiment, °F

cross sectional area of experiment housing, in?

depth of experiment housing, in

horizontal reaction induced at forward experiment mount, 1b

vertical reaction induced at forward experiment mount, lb

moment induced at forward experiment mount, in-1b

vi




A PRELIMINARY THERMAL DISTORTION ANALYSIS
OF THE
PROPOSED AOSO EXPERIMENT SUPPORT STRUCTURE

by
Donald E. Gray

INTRODUCTION

One of the primary objectives of the Advanced Orbiting Solar Observatory (AOSO) structural
subsystem is to satisfy and maintain the stringent optical alignment requirements established be-
tween sun sensors and certain of the contemplated experiments. The spacecraft substructure
pertinent to this objective is the central experiment support tube.

The proposed experiment support tube is an aluminum alloy hexagonal cylinder composed of
six joined honeycomb sandwich panels. The hexagonal tube is joined to the external observatory
structure through three radial pylon supports which are attached to the tube at its midspan. Pro-
posed experiment mounting to the support tube is through two yoke end mounts which are joined by
four diagonal struts.

The optical misalignment induced between sun sensors and individual experiments is a fune-
tion of both geometric and thermal variables. For an assumed geometric configuration and zero
"g" environment, the optical misalignments can be attributed primarily to the temperature gradients
over, and temperature levels of, both the support tube and the experiments.

DISCUSSION

It is of first interest to obtain some estimate of the interaction loads induced at the experiment
mounts by experiment interaction with the support tube. As shown in Figure 1, a single experiment
is considered mounted to the top of the support tube and left of its midspan. The thermal gradients
applied across the experiment and tube are assumed linear and constant over the length of the
structure between mount locations. The Euler-Bernoulli theory is assumed and the experiment
and tube are considered cantilevered at the aft (right) mount. It is further assumed that no rela-
tive rotations or displacements occur at the mounts.

Considering the deflections of points P and P (see Figure 1) and applying the above assumptions,
a set of compatibility equations can be developed in terms of interaction loads at the forward



experiment mount. The sign convention used for deflections, loads, and temperature gradients is
depicted in Figure 2. Also shown are the loads at points P and P. In matrix form, the com-
patibility equation is

{5} + 1e1{x} = {5;% + (F1{x} (1)

Since X, = -X,, X, = -X,, and X, = -X,, Equation (1) can be expanded to

aL(T+(AT)/2)| |L/AE  L?h/4EI  -Lh/2EI X,
aL?AT/2h +i 0 L3/3EI -L?/2EI Xy
~alAT/h 0 -L%/2E1 L/ET | | X, - (Xyh)/2
aL(T- (ATy/2)| |WAE  -L*hW/A4El  Lb/2EI X,
= GL2AT/2h  >-| O L3/3E1  -L?/2ET X, (2)
~alAT/h 0 -L%/2E1  L/EI X, + (X, 0)/2

The individual terms of Equation (2) are developed in Appendix A.

The influence coefficient matrices are unsymmetrical due to the non-zero terms f,, and f ;.
Both terms must be considered since points P and P are at substantial distances from their re-
spective neutral axis.

Adjusting the influence coefficient matrices in Equation (2), the load column matrix can be
rewritten in terms of the three primary reaction loads X, X, and X,. Thus

oL (T + (ATy/2)) (L/AE +Lh?/4E1) L2 h/4EI ~Lh/2E1]| Xy
aL2AT/2h p + L? h/4EI L3/3E1 -L2/2EI| < Xy
~alAT/h | Lh/2EI ~L2/2E1 L/EL | Xy
aL(T - (4T)/2) | ?L/'A_E +Lh?/4EI)  -L?h/4EL Lﬁ/zlz_ﬂ X,

= aLT/2h - -L? h/4E1 L3/3E1 -L%/2EI| <« Xy (3)
sk ) | e Ly UET (%




Assuming both the support tube and the experiment housing to be constructed primarily of the
same material, E = E and o ® o«. The load matrix can now be isolated by grouping terms and
factoring. Thus ’

() A+A B2 h? L(a_n) 1(e_n\|" [ &% +o1)| )
Xy (M T Tf) ‘Z‘(T‘T) 7(?‘?) GE[T—T-( 2 )]
- L{h h L2 [T+1 L (I+1 aEL (AT AT (4)
Db k) w0 s L =@
1(h_h L(I:1 I+1 AT AT
K N 2(1'1) ‘2( n) (11)4 L _aE(h h) )

A digital computer program written in Fortran II language for the solution of Equation (4) is
listed in Appendix B as Program I. Using this program, interaction loads can be calculated for
any number of cases. Loads for eight example cases were calculated and are listed in section A
of the results.

Since optical alignments must be held within required liinits, it is also of interest to obtain
some estimate as to the amount of misalignment induced during flight conditions. The optical
misalignment can be considered to be the relative angular displacement between two pre-aligned
points. As shown in Figure 3, a single experiment is considered mounted symmetrically about the
support tube midspan. The thermal gradients applied across the experiment and tube are assumed
linear and constant over the length of both structures. Again the Euler-Bernoulli theory is assumed,
but the experiment and tube are considered cantilevered at the tube midspan. It is also assumed
that no relative rotations or displacements occur at the mounts.

Referring again to Figure 3 and selecting P' as a reference, the rotational deflection of Pis
simply the rotational terms for the hexagonal tube in Equation (2). Thus

XH
~alTL — — :
55 = —p - lo LYE  WE] Xy (5)
h
Xyt Xy 3
Expanding Equation (5) we get:
AL L*Xy X,  LhX,
° - " nh " 2EI T EI _ 2EI
or
AT LX hX
5 — = "éTL+—L-<——V—x R (6)
gP h EI 2 M 2



Since there are assumed no relative rotations or displacements at the mounts, Equation (6) also
represents the rotational deflection of point P with respect to either P’ or P'.

Next consider the rotational deflection of point P at the left end of the support tube. If point
P is selected as a reference, the rotational deflection of P’is due only to the temperature gradient
across the tube. Therefore, if L is replaced by L’ in the temperature induced rotational displace-
ment term for the hexagonal tube in Equation (2), we get:

89?”/; = —EA—’I:L'/E (7)

The total rotational deflection of P" with respect to the midspan, P' or P’, is equal to the
algebraic sum of the relative deflections. Thus

Sepr T Pop * Sop/p (8)
Substituting for s,; and 5,54 and collecting terms

_ —alAT , L (L% Exn)
bopr = T LALDY g\ - X~ T3 (9)

Since the optical axis of the assumed experiment package has not been defined, the solutions
of all three Equations (6), (7), and (9) may be of interest. A digital computer program written in
Fortran II language for the solution of these three equations is listed in Appendix B as Program II.
The program also yields the interaction loads introduced at points P and P, i.e., the solution of
Equation (4).

RESULTS

A. Interaction Loads Introduced at the Forward Experiment Mount

Referring to Figure 1, the interaction loads introduced at points P and P were obtained through
the solution of Equation (4) for the following eight cases:

Geometrical Properties Utilized

Hexagonal Tube Experiment Housing (Assumed)
I = 28.03 in** I = I/2 and >, in?

A = 1.15 in? A = 0.50 in?

h = 14 in h = Tin

E = 107 psi E = 107 psi

o = 12.8x 10°% in/in/°F a = 12.8x 107 ° in/in/°F

*See Appendix C for calculations.




Q1 =

(a)

0°F
1°F
0°F
1°F

Case 1 -

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Temperature Distributions

(b)

AT = 1°F
AT = 1I°F
T = 0°F
T = 0°F

(c) (d)

AT = O°F AT =
AT = 3°F AT =
T = 0°F T =
T=1°F T =

Example Cases with Results

Assume I = I/2,L

X, = 11.66 Ib

X, = 0.1b

X, = -85.45 in-lb
Assume I = 1/2,L
X, = 11.66 Ib

X, = 0.1b

X, = -85.45 in-1b

Assume I = T/2,L

Xy = -23.311b

Xy, = 0.1b

X, = 85.46 in-1b
Assume I = o, L =
X, = 44.611b

X, = 0.1b

X, = -568.52 in-1b

Assume I = ©, L =

X, = 44.611b
X, = 0.1b
X, = -568.52 in-1b

Assume I = ©, L =

Xy = -66.911b
X, = 0.1b

X, = 724.64 in-1b
Assume I = I1/2,L
X; = -11.651b

X, = 0.1b

X, = -256.33 in-1b
Assume I = o, L =
X, = -22.301b.

X, = 0.1b

X, = -100.15 in-1b

= 5.75 in, and temperature distribution (a).

= 28.5 in, and temperature distribution (a).

= 28.5 in, and temperature distribution (b).

5.75 in, and temperature distribution (a).

28.5 in, and temperature distribution (a).

28.5 in, and temperature distribution (b).

= 28.5 in, and temperature distribution (c).

28.5 in, and temperature distribution (d).

1°F
3°F
0°F
1°F




It is of interest to note that the vertical force, X, is equal to zero for all eight cases. For
the assumed configuration, the vertical force, X,, is always zero. This relation is shown in Ap-
pendix A.

B. Induced Rotational Deflections

Equations (6), (7), and (9) were solved for the configuration depicted in Figure 3. The first
run utilized the fillowing input values assuming aluminum alloy for both the experiment housing
and the hexagonal tube: T = 28.03in*, I = 1/8, A = 1.15in%, A = 0.50in% h = 14in, h = 7 in,
E = 107 psi, a = 12.8 X 10°%in/in/°F, L = 10.51 in, and L' = 16.17 in. A total of 144 different
cases of temperature-gradient combinations were considered. In many instances, the same de-
flection resulted for different temperature-gradient combinations. Therefore, cases yielding
like deflections were grouped together where each group number identifies the first case in that
particular group. These groups are listed in Table I along with the corresponding temperature-
gradient values for each case.

The results are presented as sets of parametric curves for the various groups in Figures 4,
5, and 6 with deflections plotted as a function of the temperature gradient across the hexagonal
tube. Figure 4 shows the variation of §,57 with AT. This deflection is represented in Program II
by the variable name, DEFHEX (see Appendix B). Since the curve slopes are equal and constant
for all groups, the effect of changing the temperature-gradient combinations is to shift the curve
along the ordinate to a new deflection for a given AT reference. This shows that for a given de-
flection there exists a range of possible AT’s. It is of interest to note that zero deflections are
theoretically possible for AT’s in the range of +7 seconds of arc. The apparent subgroups of three
are for cases containing similar T and T parameters. The variable within these subgroups is the
less significant AT parameter. The single curve in Figure 5 indicates the variation of §,; +/5 With
AT for all groups since, from Equation (7), the free bending of the beam is dependent only on
the thermal variable, AT, holding «, L', and h constant. This deflection is denoted by the variable
name DEFREL in Program II. The slope of this function is shown to be -3.051 arc sec/°F. The
variation of § 5, with ATis shown in Figure 6. This deflection is the algebraic sum of DEFHEX
and DEFREL and has the variable name DEFEND in Program II. As indicated, zero deflections
are also theoretically possible for AT's in the range of +7 seconds of arc. The slope of these
curves is shown to be -3.845 arc sec/°F.

Several additional runs were executed varying such parameters as the type of structural ma-
terial, length of support tube, distance between experiment mounts, and experiment housing cross
sectional moment of inertia. In addition, runs were executed for zero and exceptionally large tem-
perature gradients across the experiment housing. Parameters for all runs are listed in Table II.

Group I was selected as the criterion for correlating the results in the several runs. These
results are indicated in Table III and Figures 7 and 8. Table III includes the slope A3 3 /A(ﬁ) and
the corresponding interaction loads for the respective runs. The longitudinal interaction force,
Xy, and interaction moment, X,, are shown respectively in Figures 7 and 8 for each run. The




results indicate that run 4 with Beryllium as the structural material yields the lowest deflection
for a given transverse temperature gradient, 2T. This run also lends itself to the highest in-
teraction loads as might be expected. Comparing runs 1 and 2, the effect of zero thermal gradient
across the experiment housing is to decrease the horizontal force, X,, by approximately 3% and
increase the moment, X,, by about 13%. However, as displayed in run 3, a AT of 7°F greatly re-
duces X, by about 80% while increasing X, by approximately 20%. It is of interest to observe that
the deflection curve slope is not affected appreciably by changes in AT in the range considered
i.e., 0 - 13°F. Considering runs 1 and 6, it is seen that increasing the experiment housing cross
sectional moment of inertia by a factor of ten increases X, by approximately 37%, decreases X, by
about 6%, and, most significantly, reduces the deflection slope by approximately 31%. Doubling the
support tube length or, more meaningful, increasing the distance between experiment mounting
points (run 5) yields a change in the deflection slope which is indicated to be directly proportional
to this AL. This relation is seen by dividing Equation (6) by AT and recalling that X; equals zero.
An interesting result in comparing runs 1 and 5 is that the interaction loads are not a function of
L. This result can be shown by expanding Equation (4). This expansion also shows the vertical
load, X,, to be zero as indicated in Appendix A.

CONCLUDING REMARKS

For the mathematical model of one experiment combined with the support tube under the in-
dicated assumptions, the following points may be concluded from the results.

1. It is possible to obtain the same misalignment or rotational deflection for different com-
binations of T, T, and AT.

2. It is possible to maintain zero deflection for AT in the range of +£7°F if the values of T, T and
AT are properly chosen.

3. Changes in T and T are more significant to misalignment than changes in AT.
4. The rotational deflection is directly proportional to L.

5. The interaction loads are independent of changes in L.
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APPENDIX A

I. DEVELOPMENT OF INDIVIDUAL TERMS WITH EQUATION (2)

A. Temperature induced displacement and rotation matrices

{51‘} = Bv.r (A.1)
o,
e L ,
" ¢ ] 15
2’ 42 NA e
.’2 h ::_'p
I ) [+
by = ke T [t

Sketch A-1
Displacements due to a uniform
temperature increase.

L >

Sketch A-2
Displacements due to a linear vertical
temperature gradient.

From Sketches A-1 and A-2, induced displacements at point (2) relative to point (1) due to a
uniform temperature increase (T) and a linear vertical temperature gradient (AT) are shown re-
spectively to be

T = ) T = & T =
SHT aTl , v, or 0 (A.2)
and
aATL2 aATL
Ar - Ar _ Ar - _ 22Lb
SHTT = 0%, SVTT - 2h BHTT B h (A-3)

*Assuming small deflections.



The induced displacements of point (P) relative to point (1) can be expressed as

. h _ aATL
b T fA) 2 m e -
o A alTL?
SVT = bV:. + vaT 0 + —oh (A.4b)
- AT - aATL
seT = 59TT + agTT = 0-—§ (A.4c)
Therefore, Equation (A.1) becomes
o
al (T + ’A2l>w
aATL?
(3 = < 2h > (A.5)
-alTL
. h J
Going through a similar development, it can be shown that for point (P) relative to point (3),
(_ (_ ﬁ N
oL \T -
_ - oATL?
{3;} = < = > (A.6)
-alTL
. h -
B. Influence coefficient matrix for loads applied at the neutral axis
fH!-l fVH fﬁﬂj
(f] = |fuy  fyy  foy (A.T)
_f}w fve f99

10




+»  Where f,. is defined as the displacement in the j direction due to a load applied in the i direction

]

NN

&

(Tf .- T

Sketch A-3
Unit loads applied at the
neutral axis, point (2).

For unit loads applied at point (2), see Sketch (A-3), terms in Equation (A.7) for displacements at
point (2) become

gy
1
Zle
LY
-
-

I
<
)

<
-

|

[

L
E 0 0
L3 12
1 = |0 3 mr (A.8)

712
LoiLTﬁ

Considering displacements at point (P) due to unit loads applied at point (2) as shown in Sketch
(A-3), the following two changes occur in the individual terms of Equation (A.8):

h _ L2h
fou = (fve) 2 = 2EX
B h _ -Lh
fon = (fo0) 2 = 2EI

11



Therefore, the influence matrix of Point (P) for loads applied at point (2) (neutral axis) becomes

L L?h  -Lh|
AE  4E1 ORI

LS __L2

3EI  2EI

—
-~
o
1
o

2L
|1© =®  E

(A.9)

Using a similar development, it can be shown that the influence .matrix of Point (P) (see Figure 2)

for loads applied at point (4) (neutral axis) becomes

l -L’h  Lh |
AE 4E1 2ET
L3 -L?
(£} = |0 3EI 2E1
-1.2 L
0 — e
2EI EI
- —

Xy
{X} = Xy
Xy
}
2 _ NA no— 1
P
Xy * v
Xy
Sketch A-4

Unit loads applied at point
(P) off neutral axis.

12

(A.10)

(A.11)




. With reference to Sketch (A-4), the indicated loads applied at point (P) reflect the following loads
at point (2):

X, = FX

H H
xV = PXV
= P - P b—
Xy Xy Xy 2

Substituting these expressions into Equation (A.11) and dropping the pre-superscript (P) yields the
following load matrix at point (2) (neutral axis) due to off axis applied loads (point (P)):

{x} - Xy (A.12)

(x, )
x} = < x 3 (A.13)

h

Xy * Xy2

_ J

II. IDENTITY FOR VERTICAL LOAD, X,

In Part A of the results it was first shown that, for the assumed configuration, the vertical
force, X,, is always zero. This result can be shown as follows: Writing Equation (4) in con-
tracted form as

{x} = [f+f]7? {ST +§T} (A.14)
and redefining the inverse of the combined influence coefficient matrix as

f+f1-t = [F17! = [k} (A.15)

13




and the combined temperature induced displacement and rotation mairix as

{ST+§T} = {d} (A.16)

Equation (4) can be also expressed in contracted form as

{x} = I {q} (A.17)

(k] is known as the combined stiffness matrix. Expanding Equation (A.17) yields

xH kll k12 le dl
Xy = |ka ko ks d, (A.18)
XB k31 k32 k33_] d3
Solving for X,
X, = kpd; +ky,d, * k,, dy (A.19)

Where k,,, k,, and k,, are the second row terms of [F] 'in Equation (A.15).

The inverse of {F] is equal to the adjoint of [F] divided by the determinant of [F] . Since [F]
is symmetrical, the transpose of [F] equals (F]. Further, the adjoint of (F] becomes just the
cofactor of [F]. Therefore, Equation (A.19) can be expressed in the form

C C Cc
Xy, = |—1]dl+—”d +—2§d

F 7| 42 " 7p| G (A.20)

where C;, are the cofactors of the F,, terms of [F], and [F| is the determinant of [F].

Expanding the second row cofactors of [F]

21 ° _(F12 Fy3- Fy3 F32) ; Cp = +(Fu F33 tFy3 F31) ;

Cy -~ _(Fn F3, —Fp, Fu)
Substituting into Equation (A.20) yields

1
Xy = EI- {(— F,Fy +Fy, F32) d, + (Fu Fy3-F3 Fy)d, + (— Fy, Fyy +Fy, F3y) ds} (A.21)

14




Substituting terms of Equation (4) into Equation (A.21)

. L JL{h p\(T+1\ Lfh h\(I-+rT T
Y 7 T {[“(T I)(TI> 4(T 1>(TI>} S
A+A b2 B2\ (T+1\ 1(h h\?| |oELIAT AT
M a1 I\ a\T T 2\f ~h
A+A h? h?\ L/(h h\? AT AT
<_AA e 41) B 8(—{_ I>] [QE(E ) h)]}(A-ZZ)

L

Mo

Since C,, d,= Oand C,,d, = C,3d,,.

(A.23)

for all cases.
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APPENDIX B

Fortran Listing of Programs I and I

I. SYMBOL INTERPRETATION

Fortran Problem

A A

AH h

Al 1

AL L

DT AT

DTB AT

T T

TB T

EE E

ALPHA a

AIB 1

AHB h

AB A

Z(ij) (£ + )

C(ij) Cofactor of (f + 1);,
D Determinant of [f + ]

17
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LISTING OF PROGRAM 1

PRUGKAN

DINENSTON
1o FORFAT

Z{50) .

(5:"114}}

11 FORNAT
le FORPAT

(Flles)
(s(Lpzltes

15 Fuklial
146 FOREAT

{ctlbaet)
(bbdUal)

Le FORHAT (wellatb)
1o FOREAT (1)

1 REAL INPUT TAPLD 2,

STl s A

VRITE UUTPUT TARL

(o

Sy

Tl

I -
R ) [

ey }

Al iy

IS uR VI 1

e

N
(WS

~[r
—

OO OY YO NN NN NS NN N

JFL{ o) v U

2l=¢

e lsd)Telad)

(il e e i e i 2l

~N
11

FUIy = Claysa{ul)
5 WRKITE wuTPuT T/ kL o

T R oy
P

11l

()

14

DUFHEX = (—alb ey
o (P 4 (L)% i/

TR il /e LARENT ()7 ([ w
el ) FleLooULY

RTINS ST N WA R Y PO

ULFLAR =

S AF{S)-FLL1)%00i/2)

(=L ipwp 1o
5

L st LW W

ceib_ 0L

(/7 e

SlTh CoThHuT Taet 3

k4

les LLFREXs

CRITE GULTPoT TARL 25 16
Gu TU L
il

18

UL LR

FLerml bt/ e sl ) w




)

oI,

LISTING OF PROGRAM II

C PRUGKA 11
DIFINSION Z{50)s C(H0}e FI10) U
lu FURMAT (bbl4e4)
i1l FORIMAT (11U s4X o oHX(H)=F lUe4 /X brX (V) =104/ oX e HX(PF)=F 1 0e4 /)
12 FuxisT (lublled) -
13 FURFAT (1lhu) ~ —_
14 FURMAT (1Fioebs1UXs4CASLIA) -
15 FOUKFAT (49X e LOHDATA 1nPUT)
16 FURIAT {(1HUs50Ks THRESULTS) S
17 FURPAT (11w esbXelHAs Lilrs iltHe LUXs bttt s TUXsZHALF=AsOR st DarsTXe

DOHH chAReTXsDHA BARsYAslti]l st UAeltHL s 10X s )
1o FURIAT (It e7Xes7HDELTA TelcXeliilol2XeonT Drike7XslirwelTih T phAxsbOXs

DOHUEFHEX s BX s OHLEFREL 9 SXa b LFEIL)

1 rbEaD ITheuT ThEFE Z2s1Us ke idte ELs ALPhiAas Aloe mtitne Atie 19 Als aAlg
WRITL UUTPGT TAPE 34105 T h T T 7
URITE OUTPUT TabPE 3417
WiKITE UUTRFUT ThPE 381ds he s Cbe mlPfine =lirs miles s ls mLemle
wRITE wuTPLT TAPL 5416 -
T asSe = 1 - B
b U J=il9D el -
ui=u T T T T ) B
nNolon=1l
BopU 49 NZ1leidel
T=u*KSIGiv
LoIGin=1 T T T T
9 DO 55 L=1lebel
To=L¥Lo10M N T - -
S IGN=1
DU Z5 i=fe{f 0
DT =reciS T on
T ZIITT = (ro+rl 7{ACFnlFnhesx 2/ (e ®nln ) +ntie® 2/ {dawnl) T
2{12) = =—hl/be*{Ar/ mib=tr/nl)
LTI3) = «oFano/nlv=—AH/AT) T oo - B
L(35) = (nib+Al )/ (Alb%A1)
I1Z22) = AL=FZ27 37213310
Llzd) = —al/ e¥Z(553)
Z(ZIT = ZT12) T T ) - o
Z(31) = 2{(13)
T ZT3ZT = Z(73) o T T
ClLlLlY = Z(22V¥2{(533)—L(22)%2(32)
T ==L =ZT337+2 (o)=L {32])
C{13) = LU21)%L(32)V~2L(22)V%2{51)
- TA21) =—Z(1Z1RZ(351+2(13)%2 (352} T T
C{22) = LUL1)y®L(35)—4L(13)y¥Z(51)
o CT23Y ==Z(111%Z(32)1+Z(121%Z2 (311 T T o T
C(31) = Z12)V¥2 (25 =2(13y%L(22)
C{352) ==Z{1 Y%L (25)+L13Y%L{(Z1)
C{35) = LULa)*L(22V=£11e)V¥21021)

U = Z(LIVRCC22 19203V 42 12V R4 2oV %L (511 +7 013V %L(52)V%2(21)

S =ZUU3)IRL(Z2)¥ZU31) =2 12V L2 IVKZ(33) =7 (LI VRL(32)%7(25)

Y = Ec®ELPHA/D

Z{el)

(Te=T=(DTB+U1/24)%Y
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Z{02)
2{03)

AL/ Za®* {DTB/AHL=LT /AL }RY
(=UTo/AHB+UT /AaK) *Y

DU 5 T=1y>
IX 10%1+1

TY TOFT+Z
1Z 10%]+3

i n

FYT)] = CUIXTHZTOITFCUIVIRZIOZIFCLIZI*Z102)
WRITE QUTPUT TAPE 3s L1s(F(I1)sI=143)

WRTTE UUTPUT TAFE 3918

DLFHEX = (~mLPHARUTORAL/ AHD+AL* %2 F (£ )/ (2 e ¥ L ¥AT0 ) ~nL7 [EE¥ATE ) *
»  (F(3)+F (1) *AHB/Ze ) 1 %#240656E5

DEFREL==ALPHAXUTD¥*ALZ¥2 4 06565/ At

vrFENDS Dertie X+obh Kb

WRITE UUuTrPUT TAPE 259 L&y
b ICASE

PR

To

Tos

LVibs

NEFAEXSs LDEFRELS UEFENDS
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CONT INUE
TF{MOTGINY 24400926

26

MO TGN=~1
GO Tu 7

34
35

ICASE = [ChROE + 1
CONTINUE

36

ITF{LSIGN) 4Le05Cs36
LSIGN=—-1

GO TU v
COMTINUE

46

TFIKSTGIN) 20930 946
KoIGhN==1

3u

GO TO &
CALL bumb

Zu

CONTINUE
GO TO |1

END

20




APPENDIX C

Moment of Inertia Calculation for the Proposed Honeycomb Sandwhich Hexagonal Tube

-Zy

Sketch C-1

As indicated in Sketch C-1, the proposed support tube is composed of six honeycomb sandwich
beams joined to form a symmetrical hexagonal cross section. Considering a typical cross section
of the honeycomb sandwich structure as shown in Sketch C-2, the moment of inertia about its y-y
axis can be expressed as *

3_4:3
[ - b -td) (C.1)
¥ 12

where

t Sandwich thickness
t. Core thickness
b Section width
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Sketch C-2

Since the cross section of the tube is symmetrical across both the Y and z axes, only one quadrant
need be calculated and then multiplied by four to obtain the total cross sectional inertia of the tube

about the Y-Y axis.

Referring again to sketch C-1, the -v/-Z quadrant is shown to be subdivided into two sections,

A and B. Expressing the total inertia of the tube in terms of these two sections

where

I, Centrodial area inertia about the y-yaxis of section i
Z' Normal distance from Y-Y axis to centrodial (y-y) axis of section i

A, Effective cross sectional area of section i

Expanding Equation (C.2)

Sketch C-3

22
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With reference to Equation (C.1) and Sketches (C-2) and (C-3), the centrodial area inertias for

sections A and B can be expressed respectively as

[l

bl
ya = T2 (E3-t23)

o

— _ b

Ly 12 {(t’)a N (tc’) 3]
From Sketch C-3, t' and t can be expressed in terms of t and t_ as

t = t seco

and

(C.4)

(C.5)

(C.6a)

(C.6b)

(€.7)

Assuming the effective area for bending to be only the face sheet cross section of the sandwich

structure, the effective areas become (see Sketch C-1)

A, = b, (t-t)

e

2A,

Substituting Equations (C.4), (C.7), (C.8a) and (C.8b) into Equation (C.3)

b, sec3 ¢

T -k v2(3) (t—tc>}

The following values for parameters in Equation (C.9) were used to evaluate I .
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0.774 in.

-
It

t, = 0.750 in.
b, = 4.165 in.
b, = 0.894 in.
zZ = 6.8271in.
Z' = 3.4131in.
¢ = 30°

Solving Equation (C.9) for these values yields an I, equal to 28.03 in®.
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Table II

Parameters for Program II Runs.

Run| proterial a E Support Tube| L | L’ I I ATC°F){ h |h | A A
No. (in/in/ °F) psi Length (in) | (in) | (in) | (in*)| (in*)|Range |(in)|(in)|(in?) |(in?)
-4
1 jAluminum(12.8 X 10-¢ 107 60 10.51]16.17{3.514{28.03| 1 - 5 7114105 |1.2
2 [Aluminum|(12.8 X 1076 107 60 10.51]16.17|3.514]28.03 0 711405 | 1.2
3 |Aluminum(12.8 X 1078 107 60 10.51116.1713.514(28.03} 7 -13| 7 |14 | 0.5 | 1.2
4 (Berylliumi7.39 x 107° |4.2x 10’ 60 10.51/16.17|3.514|28.03| 1 -5 7114105 | 1.2
5 [Aluminum(12.8 X 10-8 107 120 48.00]12.00/3.514)28.03} 1 -5 7114]05 § 1.2
6 |Aluminum|12.8 X 10°¢| 107 60  [10.51(16.17(35.14(28.03 1 -5 | 7 | 14| 0.5 | 1.2
Table III
Deflection Curve Slopes and Interaction Loads for Program II Runs.
RunNo | CaseNo | BT(°F) AT(°F) Slope* X 4(Ib) X, (in-1b)
(Arc Sec/°F) " "
1 1 +7 +1 -0.794 - 97.18 -369.21
2 1 +7 0 -0.794 - 93.82 -418.47
3 1 +7 +7 -0.794 -117.34 - 73.61
4 1 +7 +1 -0.455 -2317.00 -898.41
5 1 +7 +1 -3.628 - 97.18 -369.21
6 1 +7 +1 -0.547 - 87.76 -507.37

*Slope = 05 = /NAT) or DEFHEX/A(AT)
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